
Battery Optimization of Android OS
Alex Chirayath, Alfred Gonsalves, Chinmayi Kulkarni, Mahendra Mehra
Department of Computer Science, Fr.CRCE, Mumbai University Mumbai, India

Abstract- The Android OS, based on the Linux OS
offers features, functionality and an open architecture
that has become the most widely mobile and tablet OS
in the world. However, Android devices even after
being so widely used have many processes that can
cause the battery to drain very quickly even when the
functioning of these processes is not necessary. Hence,
the users of Android devices must intelligently and
proactively manage the energy in their batteries.
Optimizing Android is always a challenge, because the
Android stack is spread across tools, domain specific
frameworks from community projects, frameworks
developed by Google, Linux Operating System, protocol
stacks, etc. This paper aims at showcasing all such
activities that are eating into the device battery without
the user having any idea about it. It presents a
mechanism in the form of an application that will
intelligently and efficiently manage different
components that affects the battery life.

Keywords: Android, Service, Broadcast, Intent, Wi-Fi,
Bluetooth, GPS, Location, Smartphone.

1. INTRODUCTION

Android operating system offers features of connectivity
such as Bluetooth for file transfer, WiFi and also other
features such as GPS. All these processes consume the
battery of the device. The other factors that affect battery
are the constantly running background services, screen
brightness, constantly updating widgets on the home
screen, NFC remaining ON even when not used. The
smartphone is called a ‘smart’ phone because it runs
multiple processes simultaneously. Every app you install in
your phone take some storage space and runs some
background processes. The more storage space occupied or
the more background processes running on your phone, the
slower your phone’s performance. These processes run as a
service on the android device and is not visible to the user.
But these processes can lead to unnecessary RAM usage
and hence can lower the performance and speed of the
device. The other main factor in battery drainage is Wi-Fi
and Bluetooth. If the device is not connected to any Wi-Fi
network, the Wi-Fi switch should be toggled to off. If it is
ON, the device continuously checks if a Wi-Fi network is
available for it to connect and therefore eats up a lot of
battery.
Here are some Bluetooth data samples, based on a
Motorola Droid:
Mode Energy
Bluetooth receive 751 mW
Bluetooth send 487 mW
Bluetooth standby 2.8 mW

Similarly Wifi sums upto 8-20% of the battery usage of a
normal Android cellphone device depending on the actual
use

2. SYSTEM SERVICES FOR BATTERY OPTIMIZATION

The Android platform includes various system services like
background services, Bluetooth, GPS, Wi-Fi etc. which can
be managed in a more efficient way to improve the battery
life. Taking steps like disabling certain services when the
connectivity is lost, or managing when to toggle the Wi-Fi,
using the system location services for smart Wi-Fi
toggling, the battery life can be improved.

2.1 Services
The Android platform provides and runs predefined system
services and every Android application can use them, given
the right permissions. These system services are usually
exposed via a specific Manager class. Access to them can
be gained via the getSystemService() method [4].
A service is a component which runs in the background
without direct interaction with the user. As the service has
no user interface, it is not bound to the lifecycle of an
activity. They are used for repetitive and potentially long
running operations, i.e., Internet downloads, checking for
new data, data processing, updating content providers and
so on. Services run with a higher priority than inactive or
invisible activities and therefore it is less likely that the
Android system terminates them.
BroadcastReceivers [5] simply respond to broadcast
messages from other applications or from the system itself.
It is used as a base class and will receive intents sent by
sendBroadcast(). These messages are sometime called
events or intents.

Alex Chirayath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4361-4363

www.ijcsit.com 4361

There are two important steps to be carried out to make
Broadcast Receivers work: 1) Creating the Broadcast
Receiver
2) Registering the Broadcast Receiver A Broadcast
Receiver can be created by overriding the onReceive()
method of BroadcastReceiver class where each message is
received as an intent object parameter.

Intents [6] can be created to call other activity from another
activity.

Intent intent = new Intent(packageContext,
className.class);
intent.startActivity(className);

Android services are not meant to run all the time. They are
more like a task solver, e.g. download a file. After finished
with their task, they should call Service.stopSelf().
If your app needs the service again, it should only restart it
then for the appropriate task. We can use Broadcast notifier
and receiver to restart only the services which are needed
for a particular task.

There are many applications which run a single service or
multiple services. Google services use services to manage
the location, connection manager, etc. Messaging
applications like Whatsapp, Facebook Messenger,
Snapchat etc.
use the ‘Push Message Service’. Other applications also
start services depending on the task at hand. Some of these
services do not need to be running permanently. For
instance, if the device does not have access to internet,
services which use the internet need not be in the running
state. They are the unnecessary users of RAM. Such
services should be switched off and only be restarted once
the internet is available or when the application is started
by the user. We can use broadcast receiver to notify when
the internet access is available. Thus we can save on the
RAM usage and in turn reduce the battery consumption. In
such cases, custom broadcasts can be written to be
implemented on a particular event change.

 2.2 Bluetooth
 The Android platform allows wireless exchange of data
between two devices that support the Bluetooth network
stack [7]. Every device that supports Bluetooth service has
a Bluetooth Adapter associated with it.

BluetoothAdapter ba=
BluetoothAdapter.getDefaultAdapter();

The BluetoothAdapter provides functionalities such as
device discovery, obtaining list of paired devices and
listening to connection requests. Any Bluetooth enabled
device can connect with any other Bluetooth enabled
device located in proximity to one another.
The Bluetooth continues to be switched on even when no
communication is taking place. As long as the Bluetooth is
switched on, it keeps scanning for devices for
communication. This drains the battery of the device. To

avoid this situation the Bluetooth should be switched off
when the device leaves the area or if the device is in the
hold state for a considerable time span.

2.2.1 Using Bluetooth Socket
The actual exchange of data between the devices takes
place through the Bluetooth Socket. This socket is created
using the Bluetooth Device which is in turn created using
the Adapter.
BluetoothDevice bd =
ba.getRemoteDevice (String address)
BluetoothSocket bs =
bd. createRfcommSocketToServiceRecord
(UUID uuid)

The socket provides functions which inform whether the
device is connected or not. If the device isn’t connected for
a large time span, the socket should be closed and the
Bluetooth must be turned off.

if (bs.isConnected) then
ba.disable(); //Disable Bluetoothadapter end

2.2.2 Using BroadcastReceiver and Intent
Broadcast Receiver keeps a track of all the occurring
events in the system. Intents are used to inform the Android
system that a certain event has occurred.
The next action to be performed by the system is based on
this event.

IntentFilter intent =new IntentFilter
(bd..ACTION_ACL_CONNECTED);

//Register the Broadcast Receiver
registerReceiver(mReceiver ,f); private final
BroadcastReceiver mReceiver=new
BroadcastReceiver(){ public void onReceive(Context
context ,Intent intent)}.

//Listen to current activity
String action = intent.getAction();
if(bd.ACTION_ACL_CONNECTED.equals
(action))
then //BT is connected
else
ba.disable //Disconnect Bluetooth
}}

 *The time interval of the device connection can be
checked using the system time and implementing functions
of the Alarm Manager Class available in the Android OS
and Threads.

2.3 GPS-Wi-Fi
Battery power used by Wi-Fi while not connected can be
significant, presumably since it keeps scanning to try to
find networks to connect to. Whenever the Wi-Fi is ON but
not connected to any Wi-Fi network for a considerable
amount of time, it is disabled by using
setWifiEnabled(false) provided by the WifiManager class
[8]. This class provides the primary interface for managing
all aspects of Wi-Fi connectivity.

Alex Chirayath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4361-4363

www.ijcsit.com 4362

Disable Wi-Fi when not connected
WifiManager wifi = (WifiManager)
getSystemService(Context.WIFI_SERVICE); if
((wifi.isWifiEnabled)&&!(wifi.isConnected)) then
setWifiEnabled (false); End.

The Wi-Fi status check can be achieved at regular time
intervals by using the onTick() and onFinish() methods of
the CountDownTimer class.

Applications access the location services supported by the
device through classes in the android.location package.
The central component of the location framework is the
LocationManager[9] system service, which provides APIs
to determine location of the underlying device. The
following string constants can be used with certain classes
for accessing the location services of device.

1. ACCESS_FINE_LOCATION
Allows an app to access precise location from location
sources such as GPS, cell towers, and Wi-Fi.
2. ACCESS_COARSE_LOCATION
Allows an app to access approximate location derived from
network location sources such as cell towers and Wi-Fi.
3. NETWORK_PROVIDER
This provider determines location based on availability of
cell tower and WiFi access points. Results are retrieved by
means of a network lookup

Whenever the device is connected to a Wi-Fi network, the
latitude and longitude of the device can be maintained in an
array list for future reference.
This is done by using the LocationManager class along
with the LocationListener.

The LocationManager makes use of the Listener and gives
notifications when the location changes. At a later stage,
when the device Wi-Fi is OFF, and its location is already
present in the array list, it indicates that the device has
entered the range of a previously used network. The device
is then notified [10] regarding the same and given an option
to toggle the Wi-Fi.
Retrieve current location of the device
locManager = (LocationManager)getSystemService
(Context.LOCATION_SERVICE);
locManager.requestLocationUpdates (provider, 0,
0, locListener);
Location last = locManager.getLastKnownLocation
(provider); last.getLatitude; last.getLongitude;

Notify user

NotificationManager nm =
(NotificationManager)getSystemService
(Context.NOTIFICATION_SERVICE);
Notification n=new Notification
(android.R.drawable.alert_light_frame,
"Message",System.currentTimeMillis());
nm.notify(0,n);

Switching on the WiFi is areas where recognised WiFi
networks are available also enables the device to consume
lower battery amounts as receiving and sending data
packets(connecting to the Internet) consumes a lot more of
the battery resources of the Android device when using the
cellular connection compared to that when the device is
connected on Wi-Fi.

3 OTHER FACTORS
Display Screen
Most of the android devices have a high resolution display
which displays different colors very distinctly. But this
feature, though very attractive Chances are that screen
brightness is somewhere near the top of the battery use list.
Making a few easy tweaks like reducing the brightness or
setting low screen timeout will help reduce battery drain
from screen brightness.
If the device has an AMOLED screen one can enjoy big
power savings just by using a black background for the
home screen. That's because AMOLED screens use less
power to display black.
Screen brightness can also be adjusted depending on the
time of the day using the system clock of the device(for eg-
reduce the brightness at night time)

CONCLUSION
Though there have been many updates to the Android OS
and with various other applications making the Android OS
even smoother, a major concern is the battery life of the
devices. Increasing the battery capacity seems to be a
solution, however, it is not feasible as it increases the
weight and cost of the phone and will also help only the
future gadgets. Therefore, the ideas discussed focus on the
modifications that can be made on the existing services
provided by the platform and in turn enhance the battery
usage by enabling certain smart features. If these features
can be applied to the existing OS itself, the battery
consumption of the phone can be reduced by a considerable
amount giving a more efficient way to use the resources of
one of the most essential devices of our day to day lives.

REFERENCES
1. The New Boston android tutorials
2. Professional Android 2 Application Development by

Reto Meier
3. http://www.howtogeek.com/howto/25319/ complete-

guide-to-maximizing-your-androidphones-battery-life/
4. AndroidServices/article.html
5. http://developer.android.com/reference/android/

content/BroadcastReceiver.html
6. http://developer.android.com/reference/android/

content/Intent.html
7. http://developer.android.com/guide/topics/

connectivity/bluetooth.html

Alex Chirayath et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4361-4363

www.ijcsit.com 4363

